Using High-Carbon Fly Ash as a Supplementary Cementitious Material in Concrete

Coal fly ash has been beneficially used as a supplementary cementitious material (SCM) in concrete for decades. However, not all fly ash produced can be used in making concrete. Coal fly ash that has an excessive carbon content will adsorb air entraining admixtures (AEAs) from the fresh concrete mixture, resulting in an inadequate air-void system in the concrete. This results in concrete that is less resistant to cyclic freeze-thaw damage and exhibits a lower workability and reduced durability. Furthermore, power plants that produce coal fly ash have begun adding powdered activated carbon to the flue gas stream of the coal combustion process as a way of removing mercury from emissions. This means that in the future, a larger fraction of the coal fly ash produced will be of the high-carbon variety. A method of eliminating the adsorptive effects of carbon is required if fly ash use is to remain constant or increase. This project will investigate methods to mitigate the detrimental effects of high-carbon fly ash in concrete and ultimately allow use of more fly ash sources in concrete manufacturing.

Research Objective

Determine a method to render high carbon fly ash usable as a supplementary cementitious material.

Approach

To accomplish the research objective, various organic and inorganic substances will be used to pre-treat the fly ash prior to addition to the concrete mixture. The hypothesis is that a material can be identified that will preferentially adsorb on the carbon fraction of the fly ash, thereby negating the adsorptive capacity of the ash and eliminating the negative effects on the concrete caused by the adsorption of AEA. The various substances evaluated will be rated based upon their effectiveness, stability, environmental safety, cost, and availability.
Anticipated Research Findings

The anticipated research findings include:

- Determine which method is the best based on efficiency, cost, and sustainability.

Anticipated Implementation

The technology developed will be implemented at the concrete batch plant where ready mixed concrete is produced, or as a pre-treatment of ash by the vendor, prior to delivery to a batch plant.

Benefits

Success in this research will allow more fly ash sources to be used as a supplementary cementitious material in concrete. This will contribute to the sustainability of the concrete industry in two ways. First, using fly ash as a SCM will reduce the need for the manufacture of traditional cement resulting in the reduction of CO₂ produced and lower energy use. Second, the additional fly ash that can be beneficially used will provide relief from the solid waste burden that unusable fly ash poses.